Lecture 28

Euler Tours, More Notations

Theorem: A connected graph G has an Euler tour if and only if all the vertices are of even degree.

Proof: (\implies) Let W be an Euler tour.

Clearly, W visits all the vertices of G a certain number of times.

2k different edge as W contains distinct edges only.

2k edges as W contains all the edges. Hence, degree(v) = 2k.

of the walk can be similarly shown to be 1 + 2k' + 1, which is even.

- Suppose v is not the starting and ending vertex of W and W visited it k times.
- It means W entered v exactly k times and exited v exactly k times through
- Additionally, v cannot have any other edge incident on it apart from these
- The degree of the starting and ending vertex that gets visited k' in the middle

(\Leftarrow) Take any vertex v and move to a vertex v_1 through the edge $\{v, v_1\}$, then move to a vertex v_2 through a new edge $\{v_1, v_2\}$, and so on...

Won't stop at v_1 *for the same reason it didn't stop at* v_3

• • •

In this process, we will not run out of edges before returning to *v* because if we can enter a vertex we can also exit as it has an even degree.

Let C_1 be the closed walk formed in this process. If C_1 is an Euler tour, we are done. If C_1 is not an Euler tour, then pick a vertex u in C_1 whose some incident edges are not in C_1 . Why should such a *u* exist? Suppose all vertices in C_1 have all their incident edges in C_1 as well.

Then, there must exist some vertex y not in C_1 , otherwise C_1 will be an Euler tour.

Delete all the edges of C_1 from G.

The resulting graph will again have even degrees.

Start the same process from $m{u}$ in the new graph. Let C_2 be the closed walk that is formed from this process.

Let C be the closed walk formed by concatenating C_1 with C_2 .

• • •

If C is an Euler tour, then we are done. If C is not an Euler tour, then pick a vertex w in C whose some incident edges are not in C. Repeat the same procedure. Get another closed walk C_3 with a common vertex w with C. Form a larger closed walk with C and C_3 and so on ... Since G is finite, this process will stop after a finite number of steps, and the resulting closed walk has to be an Euler tour.

More Notations

- in U and their incident edges.
- For a graph G = (V, E) and a subset F of $[V]^2$, we write $G F = (V, E \setminus F)$ and $G + F = (V, E \cup F).$
- Complement \overline{G} of a graph G = (V, E) is the graph on V with edge set $[V]^2 \setminus E$.

For graphs G = (V, E) and G' = (V', E'), if $V' \subseteq V$ and $E' \subseteq E$, then G' is a subgraph of G. • For a graph G = (V, E) and $U \subseteq V, G - U$ is obtained from G by deleting all the vertices

