Lecture 28

Euler Tours, More Notations

Euler Tours

Theorem: A connected graph G has an Euler tour if and only if all the vertices are of even degree.

Proof: (\Longrightarrow) Let W be an Euler tour.
Clearly, W visits all the vertices of G a certain number of times.
Suppose v is not the starting and ending vertex of W and W visited it k times.
It means W entered v exactly k times and exited v exactly k times through $2 k$ different edge as W contains distinct edges only.

Additionally, v cannot have any other edge incident on it apart from these $2 k$ edges as W contains all the edges. Hence, degree $(v)=2 k$.

The degree of the starting and ending vertex that gets visited k^{\prime} in the middle of the walk can be similarly shown to be $1+2 k^{\prime}+1$, which is even.

Euler Tours

(\Longleftarrow) Take any vertex v and move to a vertex v_{1} through the edge $\left\{v, v_{1}\right\}$, then move to a vertex v_{2} through a new edge $\left\{v_{1}, v_{2}\right\}$, and so on...

Won't stop at v_{1} for the same reason it didn't stop at v_{3}

In this process, we will not run out of edges before returning to v because if we can enter a vertex we can also exit as it has an even degree.

Euler Tours

Let C_{1} be the closed walk formed in this process. If C_{1} is an Euler tour, we are done.
If C_{1} is not an Euler tour, then pick a vertex u in C_{1} whose some incident edges are not in C_{1}.
Why should such a u exist?
Suppose all vertices in C_{1} have all their incident edges in C_{1} as well.
Then, there must exist some vertex y not in C_{1}, otherwise C_{1} will be an Euler tour.

Euler Tours

Delete all the edges of C_{1} from G.
The resulting graph will again have even degrees.
Start the same process from u in the new graph. Let C_{2} be the closed walk that is formed from this process.

Let C be the closed walk formed by concatenating C_{1} with C_{2}.

Euler Tours

If C is an Euler tour, then we are done.
If C is not an Euler tour, then pick a vertex w in C whose some incident edges are not in C.
Repeat the same procedure. Get another closed walk C_{3} with a common vertex w with C.
Form a larger closed walk with C and C_{3} and so on ...
Since G is finite, this process will stop after a finite number of steps, and the resulting closed walk has to be an Euler tour.

More Notations

- For graphs $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$, then G^{\prime} is a subgraph of G.
- For a graph $G=(V, E)$ and $U \subseteq V, G-U$ is obtained from G by deleting all the vertices in U and their incident edges.
- For a graph $G=(V, E)$ and a subset F of $[V]^{2}$, we write $G-F=(V, E \backslash F)$ and $G+F=(V, E \cup F)$.
- Complement \bar{G} of a graph $G=(V, E)$ is the graph on V with edge set $[V]^{2} \backslash E$.

