
Lecture 28

Euler Tours, More Notations



Euler Tours
Theorem: A connected graph  has an Euler tour if and only if all the vertices are of  
even degree.

G

Proof: ( ⟹ ) Let  be an Euler tour.W

Clearly,  visits all the vertices of  a certain number of times. W G

Suppose  is not the starting and ending vertex of  and  visited it  times.v W W k

It means  entered  exactly  times and exited  exactly  times through 
 different edge as  contains distinct edges only.

W v k v k
2k W

Additionally,  cannot have any other edge incident on it apart from these  
 edges as  contains all the edges.

v
2k W Hence, . degree(v) = 2k

The degree of the starting and ending vertex that gets visited  in the middle 
of the walk can be similarly shown to be , which is even. 

k′ 

1 + 2k′ + 1 …



Euler Tours

(⟹) Take any vertex  and move to a vertex  through the edge , 
then move to a vertex  through a new edge , and so on… 

v v1 {v, v1}
v2 {v1, v2}

In this process, we will not run out of edges before returning to   
because if we can enter a vertex we can also exit as it has an even degree.
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Won’t stop at  as  has even
degree and so far we’ve seen 

odd number of edges incident upon  
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Won’t stop at  for the 
same reason it didn’t stop at  
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Let  be the closed walk formed in this process.C1 If  is an Euler tour, we are done.C1

If  is not an Euler tour, then pick a vertex  in  whose some incident edges are not in .C1 u C1 C1

…

Why should such a  exist?u

Euler Tours
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Suppose all vertices in  have all their incident edges in  as well.C1 C1

Then, there must exist some vertex  not in , otherwise  will be an Euler tour.y C1 C1

y
w

z  must have a path to some vertex 
in  as the graph is connected

y
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Euler Tours

Start the same process from  in the new graph. Let  be the closed walk that is 
formed from this process.

u C2

Delete all the edges of  from .C1 G

The resulting graph will again have even degrees.
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Let  be the closed walk formed by concatenating  with .C C1 C2

u
=

…



Since  is finite, this process will stop after a finite number of steps, and the resulting 
closed walk has to be an Euler tour.

G

Euler Tours

If  is an Euler tour, then we are done.C

If  is not an Euler tour, then pick a vertex  in  whose some incident edges are not in .C w C C

Repeat the same procedure. Get another closed walk  with a common vertex  with .C3 w C

Form a larger closed walk with  and  and so on …C C3

◼



More Notations

‣ For graphs  and , if  and , then  is a subgraph of .G = (V, E) G′ = (V′ , E′ ) V′ ⊆ V E′ ⊆ E G′ G

‣ For a graph  and ,  is obtained from  by deleting all the vertices 
in  and their incident edges.

G = (V, E) U ⊆ V G − U G
U

‣ For a graph  and a subset  of  , we write  and 
.

G = (V, E) F [V]2 G − F = (V, E∖F)
G + F = (V, E ∪ F)

‣ Complement  of a graph  is the graph on  with edge set .G G = (V, E) V [V]2∖E


